Elementary Patterns in Protein-Nucleic Acid Interactions. VI. Structure of 3-(7-Adeninyl)propionamide Monohydrate, $\mathrm{C}_{\mathbf{8}} \mathbf{H}_{\mathbf{1 0}} \mathbf{N}_{\mathbf{6}} \mathbf{O}_{\mathbf{H}} \mathbf{H}_{\mathbf{2}} \mathrm{O}$

By Midori Takimoto, Akio Takenaka and Yoshio Sasada
Laboratory of Chemistry for Natural Products, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 227, Japan

(Received 17 June 1982; accepted 19 July 1982)

Abstract

M_{r}=224.2\), monoclinic, $P 2_{1} / c, \quad a=$ 9.850 (1), $\quad b=28.326$ (1), $\quad c=7.261$ (1) $\AA, \quad \beta=$ $96.63(1)^{\circ}, \quad V=2012.4 \AA^{3}, \quad D_{m}=1.48, \quad D_{x}=$ $1.480 \mathrm{Mg} \mathrm{m}^{-3}, \quad Z=8, \quad \lambda(\mathrm{Cu} K \alpha)=1.54184 \AA ; \quad R=$ 0.057 for 3079 diffractometer-measured intensities. The two independent molecules in the asymmetric unit form a dimer, with hydrogen bonds between the carbamoyl group of one molecule and the adenine $N(1)$ of another. This NH $\cdots \mathrm{N}$ hydrogen bond may suggest a strong affinity of the carbamoyl group for adenine $\mathrm{N}(1)$.

Introduction. As part of a study on elementary patterns of interaction between amino acid residues and purinepyrimidine bases, the title compound was prepared by esterification followed by ammonolysis of 3-(7adeninyl)propionic acid which is obtained together with 3 -(9-adeninyl)propionic acid and 3-(7-adeninyl)propionic acid lactam in the reaction reported by Kondo, Sato \& Takemoto (1973).

Experimental. Prismatic crystals (from a methanolwater solution), $0.5 \times 0.25 \times 0.05 \mathrm{~mm}, D_{m}$ by flotation in a mixture of cyclohexane and carbon tetrachloride, Weissenberg photographs showed systematic absences ($\mathrm{h} 0 \mathrm{l} l$ odd, $0 k 0 \mathrm{k}$ odd) of $P 2_{1} / c$; Rigaku automated four-circle diffractometer, Ni -filtered $\mathrm{Cu} K \alpha$ radiation ($\lambda=1.54184 \AA$); unit-cell dimensions determined by least squares with the 2θ values of 48 high-angle reflexions; intensity data in the range $5^{\circ}<2 \theta<122^{\circ}$ collected by means of $\omega / 2 \theta$ scanning, scan speed 8° (2 θ) $\min ^{-1}$, scan width $0.8^{\circ}(\omega)$ plus $\alpha_{1}-\alpha_{2}$ divergence; five reference reflexions monitored periodically showed no significant intensity deterioration; no absorption correction; 3079 measured independent reflexions, 231 with no net intensities; observational threshold value $F_{\text {lim }}=1.03$; standard deviations estimated by $\sigma^{2}\left(F_{o}\right)=$ $\sigma_{p}^{2}\left(F_{o}\right)+q F_{o}^{2}$ with $\sigma_{p}\left(F_{o}\right)$ evaluated from counting statistics and $q\left(1.99 \times 10^{-5}\right)$ from variations of monitored reflexions (McCandlish \& Stout, 1975); structure solved by direct methods, anisotropic blockdiagonal least-squares, $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ minimized, $w=1 / \sigma^{2}\left(F_{o}\right) ; \mathrm{H}$ (from difference map) isotropic; zero reflexions (with $\left|F_{c}\right|>F_{\text {lim }}$) included in least-squares calculation by assuming $F_{o}=F_{\text {lim }}$ and $w=\sigma\left(F_{\text {lim }}\right)$; final
$R=0.057$ for 3079 measured reflexions ($w R=$ 0.054), maximum shift of parameters in the last cycle 0.1σ; atomic scattering factors from International Tables for X-ray Crystallography (1974); $F(000)=944$.

Discussion. Atomic parameters are listed in Table 1.* Bond distances and angles in molecules A and B are shown in Fig. 1. The values in the two adenine moieties are similar to each other and, in general, to those found in 7 -substituted purine derivatives (Takenaka, Nakano \& Sasada, 1979; Watson, Sweet \& Marsh, 1965). The purine moieties are planar with maximum shifts of $0.029 \AA$ at $\mathrm{C}(5 A)$ and $0.016 \AA$ at $\mathrm{N}(1 B) . \mathrm{N}(6 A)$ and $\mathrm{N}(6 B)$ deviate by 0.058 and $0.037 \AA$, respectively, from their purine planes. The conformation of the ethyl chain with the carbamoyl group is similar to that found in the complex 3-(9-adeninyl)propionamide-1methylthymine dihydrate (Takimoto, Takenaka \& Sasada, 1982), but different from that of 3-(9adeninyl)propionamide (Takimoto, Takenaka \& Sasada, 1981). In the present crystal, the torsion angles $\mathrm{N}(7)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$ and $\mathrm{C}(11)-\mathrm{C}(12)-$ $\mathrm{C}(13)-\mathrm{N}(13)$ are $39.6(3)$ and $-134.6(3)^{\circ}$, respectively, in A; the corresponding values in B are $-47.2(3)$ and $122.5(3)^{\circ}$. The dimensions of the carbamoyl group are similar to those of 3 -(9-adeninyl)propionamide.
The hydrogen-bond distances and angles are given in Table 2. Molecules A and B in the asymmetric unit form a pair through hydrogen bonds between carbamoyl $\mathrm{N}(13) \mathrm{H}$ and adenine $\mathrm{N}(1)$ and are related by the pseudo inversion centre. The dihedral angle between the purine plane of A and the carbamoyl plane of B is $63.2(1)^{\circ}$ [the torsion angle $\mathrm{C}(13 A)-\mathrm{N}(13 A) \ldots$

[^0]© 1983 International Union of Crystallography

Table 1. Fractional coordinates and equivalent isotropic temperature factors
B values are the equivalent isotropic temperature factors calculated from the anisotropic thermal parameters using the equation $B=8 \pi^{2}\left(U_{1}+U_{2}+U_{3}\right) / 3$, where U_{1}, U_{2}, and U_{3} are principal components of the mean-square displacement matrix \mathbf{U}. Values in angle brackets are the anisotropicity defined by [$\left.\sum\left(B-8 \pi^{2} U_{i}\right)^{2 / 3}\right]^{1 / 2}$. The e.s.d.'s in parentheses refer to the last decimal places.

	x	y	z	$B\left(\AA^{2}\right)$
$\mathrm{N}(14)$	0.5968 (2)	0.09308 (7)	0.7890 (3)	$2.4\langle 7\rangle$
C(2A)	0.6473 (3)	0.0496 (1)	0.8301 (4)	$2.7\langle 6\rangle$
$\mathrm{N}(3 A)$	0.5882 (2)	0.00803 (8)	0.7994 (3)	$2.6\langle 7\rangle$
$\mathrm{C}(4 A)$	0.4582 (3)	0.01219 (9)	0.7158 (4)	$2 \cdot 2\langle 4\rangle$
C(5A)	0.3942 (2)	0.05494 (9)	0.6695 (3)	$1.9\langle 3\rangle$
$\mathrm{C}(6 A)$	0.4675 (3)	0.09720 (9)	0.7059 (4)	$2.0\langle 3\rangle$
$\mathrm{N}(6 A)$	0.4206 (2)	0.14048 (7)	0.6616 (3)	$2.6\langle 11\rangle$
$\mathrm{N}(7 A)$	0.2651 (2)	0.04286 (7)	0.5834 (3)	2.04 <53>
C(8A)	0.2605 (3)	-0.00514 (9)	0.5848 (4)	$2.5\langle 8\rangle$
$\mathrm{N}(9 A)$	0.3733 (2)	-0.02518 (7)	0.6611 (3)	$2.6\langle 10\rangle$
C(11A)	0.1466 (3)	0.07283 (9)	0.5245 (4)	$2 \cdot 2\langle 6\rangle$
C(12A)	0.0839 (3)	0.09297 (9)	0.6893 (4)	$2 \cdot 3\langle 5\rangle$
C(13A)	0.0455 (3)	0.0542 (1)	0.8189 (4)	$4 \cdot 2\langle 6\rangle$
$\mathrm{N}(13 A)$	0.0815 (3)	0.06178 (8)	1.0000 (3)	$3.3\langle 17\rangle$
$\mathrm{O}(13 A)$	-0.0162 (2)	0.01817 (7)	0.7567 (3)	3.42 <202〉
$\mathrm{N}(1 B)$	0.2709 (2)	0.14821 (8)	1.0730 (3)	$2.4\langle 6\rangle$
$\mathrm{C}(2 B)$	0.2368 (3)	0.1932 (1)	1.0251 (4)	$2 \cdot 8\langle 6\rangle$
$\mathrm{N}(3 B)$	0.3087 (2)	0.23207 (8)	1.0601 (3)	$2.6\langle 6\rangle$
C(4B)	0.4337 (3)	0.22403 (9)	1.1551 (4)	$2 \cdot 1\langle 5\rangle$
C(5B)	0.4806 (3)	0.17933 (9)	1.2081 (4)	$2.0\langle 2\rangle$
C(6B)	0.3952 (3)	0.14021 (9)	1.1653 (4)	$2.1\langle 3\rangle$
$\mathrm{N}(6 B)$	0.4271 (2)	0.09543 (8)	1.2135 (4)	$3 \cdot 1\langle 15\rangle$
$\mathrm{N}(7 B)$	0.6102 (2)	$0 \cdot 18626$ (7)	1.3002 (3)	$2.06\langle 34\rangle$
$\mathrm{C}(8 B)$	0.6310 (3)	0.2337 (1)	1.2970 (4)	$2.6\langle 8\rangle$
$\mathrm{N}(9 B)$	0.5292 (2)	0.25790 (8)	1.2127 (3)	$2.6\langle 8\rangle$
$\mathrm{C}(11 B)$	0.7113 (3)	0.1513 (1)	1.3777 (4)	$2.4\langle 5\rangle$
$\mathrm{C}(12 B)$	0.7757 (3)	0.12551 (9)	1.2259 (4)	$2.6\langle 7\rangle$
C(13B)	0.8530 (3)	0.15911 (9)	1.1135 (4)	$2.4\langle 7\rangle$
$\mathrm{N}(13 B)$	0.8153 (2)	0.16053 (8)	0.9327 (3)	$2.8\langle 7\rangle$
$\mathrm{O}(13 \mathrm{~B})$	0.9457 (2)	$0 \cdot 18377$ (7)	1.1917 (3)	$3 \cdot 5\langle 13\rangle$
$\mathrm{O}(W 1)$	1.1626 (2)	0.18635 (6)	0.4879 (3)	$3 \cdot 15\langle 114\rangle$
$\mathrm{O}(W 2)$	0.9451 (2)	0.21785 (8)	0.6772 (3)	$4.2\langle 13\rangle$

Table 2. Hydrogen-bond distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses
A and B refer to molecules A and B.

$\mathrm{N}(1 A) \cdots \mathrm{N}(13 B) \quad 2.97$	2.975 (3)	$\mathrm{N}(13 A) \cdots \mathrm{N}(1 B) \quad 3.08$	3.086 (3)
$\mathrm{N}(3 A) \cdots \mathrm{N}\left(6 B^{\mathrm{V}}\right) \quad 2$.	2.936 (3)	$\mathrm{N}(3 B) \cdots \mathrm{O}\left(W 1^{4}\right) \quad 2.74$	2.741 (3)
$\mathrm{N}(6 A) \cdots \mathrm{O}\left(W l^{\mathrm{vi}}\right)$	3.000 (3)	$\mathrm{N}(13 B) \cdots \mathrm{O}(W 2) \quad 2.87$	2.874 (3)
$\mathrm{N}(6 A) \cdots \mathrm{N}\left(9 B^{\text {ix }}\right) \quad 3.07$	3.078 (3)	$\mathrm{O}(13 B) \cdots \mathrm{O}\left(W 1^{\text {¹ }}\right) \quad 2.85$	2.852 (3)
$\mathrm{N}(9 A) \cdots \mathrm{N}\left(6 B^{\text {ili }}\right) \quad 2.87$	2.870 (3)	$\mathrm{O}(13 B) \cdots \mathrm{O}\left(W 2^{\text {iv }}\right) \quad 2.78$	2.789 (3)
$\mathrm{N}(13 A) \cdots \mathrm{O}\left(13 A^{\text {v山l }}\right) \quad 2$.	2.988 (3)	$\mathrm{O}(W 1) \cdots \mathrm{O}(W 2) \quad 2.8$	2.820 (3)
$\mathrm{C}(2 A)-\mathrm{N}(1 A) \cdots \mathrm{N}(13 B)$	106.0 (2)	$\mathrm{C}(2 B)-\mathrm{N}(3 B) \cdots \mathrm{O}\left(W 1^{\mathrm{H}}\right)$	114.1 (2)
$\mathrm{C}(6 A)-\mathrm{N}(1 A) \cdots \mathrm{N}(13 B)$	135.1 (2)	$\mathrm{C}(4 B)-\mathrm{N}(3 B) \cdots \mathrm{O}\left(W 1^{\text {li }}\right.$)	131.6 (2)
$\mathrm{C}(2 A)-\mathrm{N}(3 A) \cdots \mathrm{N}\left(6 B^{\mathrm{v1}}\right)$	156.3 (2)	$\mathrm{C}(6 B)-\mathrm{N}(6 B) \cdots \mathrm{N}\left(3 A^{\text {14 }}\right)$	157.6 (2)
$\mathrm{C}(4 A)-\mathrm{N}(3 A) \cdots \mathrm{N}\left(6 B^{\mathrm{Vl}}\right)$	91.7 (2)	$\mathrm{C}(6 B)-\mathrm{N}(6 B) \cdots \mathrm{N}\left(9 A^{\text {III }}\right)$	150.3 (2)
$\mathrm{C}(6 A)-\mathrm{N}(6 A) \cdots \mathrm{O}\left(W 1^{\text {vil }}\right)$	138.7 (2)	$\mathrm{C}(4 B)-\mathrm{N}(9 B) \cdots \mathrm{N}\left(6 A^{\text {iv }}\right)$	113.6 (2)
$\mathrm{C}(6 A)-\mathrm{N}(6 A) \cdots \mathrm{N}\left(9 B^{\text {bx }}\right)$	136.4 (2)	$\mathrm{C}(8 B)-\mathrm{N}(9 B) \cdots \mathrm{N}\left(6 A^{\text {iv }}\right)$	141.6 (2)
$\mathrm{C}(4 A)-\mathrm{N}(9 A) \cdots \mathrm{N}\left(6 B^{\text {iI }}\right)$	94.0 (2)	$\mathrm{C}(13 B)-\mathrm{N}(13 B) \cdots \mathrm{O}(W 2)$	124.3 (2)
$\mathrm{C}(8 A)-\mathrm{N}(9 A) \cdots \mathrm{N}\left(6 B^{\text {(1) }}\right)$	161.7 (2)	$\mathrm{C}(13 B)-\mathrm{N}(13 B) \cdots \mathrm{N}(1 A)$	115.9 (2)
$\mathrm{C}(13 A)-\mathrm{N}(13 A) \cdots \mathrm{O}\left(13 A^{\text {vil }}\right)$	(14) 114.1 (2)	$\mathrm{C}(13 B)-\mathrm{O}(13 B) \cdots \mathrm{O}\left(W 2^{\text {lv }}\right)$	123.3 (2)
$\mathrm{C}(13 A)-\mathrm{N}(13 A) \cdots \mathrm{N}(1 B)$	112.5 (2)	$\mathrm{C}(13 B)-\mathrm{O}(13 B) \ldots \mathrm{O}\left(W 1^{v}\right)$	144.2 (2)
$\mathrm{C}(6 B)-\mathrm{N}(1 B) \cdots \mathrm{N}(13 A)$	116.7 (2)	$\mathrm{C}(13 A)-\mathrm{O}\left(13 A^{\text {vili }}\right) \cdots \mathrm{N}(13 A)$	122.4 (2)
$\mathrm{C}(2 B)-\mathrm{N}(1 B) \cdots \mathrm{N}(13 A)$	125.2 (2)		
$\mathrm{N}(13) \cdots \mathrm{O}(W 2) \cdots \mathrm{O}\left(13 B^{\text {ix }}\right)$	122.7 (1)	$\mathrm{O}(W 2) \cdots \mathrm{O}(W 1) \cdots \mathrm{N}\left(3 B^{\mathrm{x}}\right)$	93.0 (1)
$\mathrm{O}\left(13 B^{\text {ix }}\right) \cdots \mathrm{O}(W 2) \cdots \mathrm{O}(W 1)$) 109.6 (1)	$\mathrm{N}\left(3 B^{\mathrm{x}}\right) \cdots \mathrm{O}(W 1) \cdots \mathrm{O}\left(13 B^{\mathrm{d}}\right)$	119.8 (1)
$\mathrm{O}(W 1) \cdots \mathrm{O}(W 2) \cdots \mathrm{N}(13 B)$	123.7 (1)	$\mathrm{O}(W 2) \cdots \mathrm{O}(W 1) \cdots \mathrm{O}\left(13 B^{\prime}\right)$	$80 \cdot 3$ (1)

Symmetry code: (i) $x, y,-1+z$; (ii) $-1+x, \frac{1}{2}-y, \frac{1}{2}+z$; (iii) $1-$ $x,-y, 2-z$; (iv) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (v) $x, y, 1+z$; (vi) $1-x,-y, 1-z$; (vii) $-1+x, y, z$; (viii) $-x,-y, 2-z$; (ix) $x, \frac{1}{2}-y,-\frac{1}{2}+z$; (x) $1+$ $x, \frac{1}{2}-y, \frac{1}{2}+z$.

Fig. 1. Atomic numbering, bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$.

Fig. 2. The crystal structure projected along the a axis.
$\mathrm{N}(1 B)-\mathrm{C}(2 B)$ is $62.4(3)^{\circ} \mathrm{J}$, and that between B and A is 57.2 (1) ${ }^{\circ}$ [the torsion angle $\mathrm{C}(13 B)$ $\mathrm{N}(13 B) \cdots \mathrm{N}(1 A)-\mathrm{C}(2 A)$ is $-60.8(3)^{\circ} \mathrm{J}$. The purine planes of A and B are almost parallel to each other with a dihedral angle of $4.9(1)^{\circ}$.

The crystal structure viewed down the a axis is shown in Fig. 2. Two molecules around a crystallographic inversion centre are paired by the $\mathrm{N}(13 A) \mathrm{H} \cdots \mathrm{O}\left(13 A^{\prime}\right)$ hydrogen bond between the carbamoyl groups. Molecule A^{\prime} related by the inversion centre at $(0,0,1)$ is connected to B through the $\mathrm{N}(6 B) \mathrm{H} \cdots \mathrm{N}\left(3 A^{\prime}\right)$ and $\mathrm{N}(6 B) \mathrm{H} \cdots \mathrm{N}\left(9 A^{\prime}\right)$ hydrogen bonds. The molecule B^{\prime} related by the c glide at y $=\frac{1}{4}$ is hydrogen bonded to molecule A and one water molecule through $\mathrm{N}\left(9 B^{\prime}\right) \cdots \mathrm{N}(6 A)$ and
$\mathrm{N}\left(3 B^{\prime}\right) \cdots \mathrm{O}(W 1)$, respectively. The remaining H atom of the carbamoyl group in B participates in a hydrogen bond with the water oxygen $\mathrm{O}(W 2)$. Furthermore, additional hydrogen bonds with the water molecules link molecules A and B in the three-dimensional network.
The NH $\cdots \mathrm{N}$ hydrogen bond between the carbamoyl group and adenine $\mathrm{N}(1)$ mentioned above is similar to that found in the complex 3-(9-adeninyl)propionamide-1-methylthymine dihydrate, in spite of the different crystal fields. This may suggest a strong affinity of the carbamoyl group in glutamine or asparagine residues for the adenine $\mathrm{N}(1)$ site.

References

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Kondo, K., Sato, T. \& Takemoto, K. (1973). Chem. Lett. pp. 967-968.
McCandlish, L. E. \& Stout, G. H. (1975). Acta Cryst. A31, 245-249.
Takenaka, A., Nakano, M. \& Sasada, Y. (1979). Acta Cryst. B35, 1275-1277.
Takimoto, M., Takenaka, A. \& Sasada, Y. (1981). Bull. Chem. Soc. Jpn, 55, 1475-1479.
Takimoto, M., Takenaka, A. \& Sasada, Y. (1982). Bull. Chem. Soc. Jpn, 55, 1475-1479.
Watson, D. G., Sweet, R. M. \& Marsh, R. E. (1965). Acta Cryst. 19, 573-580.

Acta Cryst. (1983), C39, 75-78

Conformation and Structure of α-L-Leucyl-L-glutamic Acid, $\mathrm{C}_{\mathbf{1 1}} \mathbf{H}_{\mathbf{2 0}} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{5}}$

By Drake S. Eggleston and Derek J. Hodgson*
Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27514, USA

(Received 12 April 1982; accepted 20 July 1982)

Abstract

M_{r}=260 \cdot 3\), orthorhombic, $P 22_{1} 2_{2}, \quad a=$ 15.042 (4),$\quad b=15.993$ (5), $\quad c=5.517$ (2) $\AA, \quad V=$ $1327.03 \AA^{3}, Z=4, D_{x}=1.303, D_{m}$ (flotation in methylene chloride $/ 1,2$-dichloroethane) $=1.28$ (2) $\mathrm{Mg} \mathrm{m}^{-3}$, Mo $K \alpha$ radiation $\left(\lambda K \alpha_{1}=0.70926, \lambda K \alpha_{2}\right.$ $=0.71354 \AA), \quad \mu=0.11 \mathrm{~mm}^{-1}, \quad T=292 \mathrm{~K}, \quad R=$ $0.066, w R=0.041$ for 1181 observations. The dipeptide crystallizes as a zwitterion with the main-chain carboxyl ionized and the amino terminus protonated. The dipeptide adopts a trans configuration with an ω torsion angle of 172°. The side chains adopt fully extended conformations on opposite sides of the peptide linkage. There is intermolecular, and possibly intramolecular, hydrogen bonding in the structure. Neither the peptide carbonyl O nor the amide N atoms are involved in the intermolecular hydrogen-bonding network.

Introduction. The conformational and structural properties of peptides containing the acidic residues glutamic acid (Glu), aspartic acid (Asp) or γ carboxyglutamic acid (Gla) are of considerable interest, partly because of the importance of these residues in calcium-binding proteins (Kretsinger \& Nelson, 1976). Recently, we have undertaken a systematic structural study of peptides containing acidic residues and have reported the structures of several of these molecules (Valente, Hiskey \& Hodgson, 1979; Eggleston, Valente

[^1]\& Hodgson, 1981a,b; Eggleston \& Hodgson, $1982 a, b, c)$. In extending this study, we here report the structure of α-L-Leu-L-Glu. This peptide sequence, with Glu replaced by Gla, occurs three times in the γ-carboxyglutamic-acid-rich fragment of prothrombin (Davie \& Hanahan, 1977).

Experimental. Colorless rods from Vega Biochemicals, Inc., grown by slow cooling of an aqueous solution, crystal $0.40 \times 0.60 \times 1.0 \mathrm{~mm}$; Enraf-Nonius CAD-4 diffractometer; systematic absences $h 00$ for h odd, $0 k 0$ for k odd, and $00 l$ for l odd, cell constants from a least-squares analysis of 25 reflections with $30^{\circ} \leq 2 \theta(\mathrm{Mo}) \leq 38^{\circ}$ measured on the diffractometer; $F(000)=560 \cdot 0$; intensity data collected in a $\theta-\omega$ scan mode, as suggested by examination of the shapes of several peaks; 1778 independent reflections, $2 \theta \leq 55^{\circ}$, $0 \leq h \leq 19, \quad 0 \leq k \leq 20, \quad 0 \leq l \leq 7 ; \quad$ Lorentzpolarization correction, no absorption correction; no systematic fluctuations in reflections $\overline{4} 50,1 \overline{1} \overline{1}$, and $\overline{2} 74$ monitored at the beginning and each 3 h during data collection (17 times); maximum deviations in $F \mathbf{2 . 2}$, $1 \cdot 6$, and $3 \cdot 3 \%$, respectively; mean values of $F 63.5$ (7), 83.0 (7), and 52.1 (8), respectively. Programs in the CAD-4 structure determination package; the structure determined using MULTAN (Germain, Main \& Woolfson, 1971); E map revealed positions of all non-hydrogen atoms; anisotropic least-squares refinement (on F) of these positions led to $w R 0.094$; weights $4 F_{o}{ }^{2} / \sigma^{2}(I)$; subsequent difference Fourier maps revealed © 1983 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters of C, N and O atoms, atomic parameters of H atoms, bond angles involving H atoms, the least-squares planes of the purine ring and the carbamoyl group and hydrogen-bond distances and angles involving H atoms have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38082 (19 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Author to whom correspondence should be addressed.

